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Review

Introducing the Neural Crest

The Neural Crest (NC) is an ectodermal cell population that 
is induced within the neural plate border region during neurula-
tion1 (Fig. 1A). NC cells are multipotent stem cells that generate 
an astonishing array of derivatives. In particular, they make an 
outstanding contribution to head and neck structures.2-4 NC cells 
produce most of the cephalic bones and cartilages and contrib-
ute to the meninges that sheathe the brain. NC cells also give 
rise to connective tissues of the cephalic blood vessels, tendons 
and smooth muscles and help to organize the outflow track of 
the heart.5 They generate pigment cells, all the glia and neurons 
of the gut and trunk peripheral nervous systems (PNS) as well 
as most of the cephalic PNS together with placodes.2,3 NC cells 
also contribute to peri-ocular structures and numerous cephalic 
organs including the middle and inner ear, the teeth, and the 
tongue among others.6,7

NC cells are only found in vertebrates and their emergence 
had a huge impact on the evolution of the chordate phylum. 
Comparisons of NC development in higher vertebrates (mouse, 
chicken, Xenopus and zebrafish) and lower vertebrates (lam-
preys) as well as studies of common ancestors (amphioxus and 
ascidians) have given great insight into NC evolution. NC cells 
most likely emerged from a primitive pigment cell population 
that acquired motile properties and progressively co-opted genes 
and functions during evolution.2,8,9 Their massive contribution 
to the organization of the head of the vertebrate has led to the 
“new head” idea which proposes that the new organization of 
sensory structures, rendered possible by the emergence of NC 
cells and placodes, allowed the acquisition of a predatory life-
style, unavailable to passive filter-feeders like urochordates or 
cephalochordates.10,11

NC induction is a complex process involving interactions 
between the neural plate, the non-neural ectoderm and the under-
lying mesoderm.1,12-14 Ligands from the Bone Morphogenetic 
Protein (BMP) family coming from the non-neural ectoderm 
are counter-balanced by anti-BMP signals produced at the mid-
line (i.e Noggin, Chordin, Nodal). This antagonism establishes 
a medio-lateral gradient of BMP activity such that low levels of 
BMP signaling are found within the neural plate and high levels 
in the adjacent ectoderm. Then, cells that experience intermedi-
ate levels of BMP are induced to become NC cells by Wnt ligands 
coming from the non-neural ectoderm and the mesoderm. NC 
induction also involves other pathways such as Fibroblast Growth 
Factor (FGF) and Notch/Delta. FGF signaling acts upstream of 
Wnt,15 whereas the Notch pathway modulates BMP signaling.16-19

This combination of inductive signals triggers the expression 
of several genes that can be subdivided into 2 main categories. 
First, a series of neural plate border markers are upregulated at the 
interface between the non-neural and neural ectoderm. Among 
these genes, we find transcription factors from the Msx, Pax and 
Zic families as well as AP2, Dlx5, Gbx2, and Hairy2.1,20 Then, 
Neural Crest specific markers such Snail1/2, Twist, Foxd3, and 
SoxE genes are induced.14

After induction, NC cells migrate extensively, before which 
they detach from the neurectoderm in a process known as delam-
ination (Fig. 1B). This step involves an epithelial-mesenchymal 
transition (EMT) that includes a loss of apico-basal polarity, a 
modification of cell-cell and cell-matrix properties, a local deg-
radation of extracellular matrix (ECM) or membrane receptors 
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Neural Crest (NC) cells are a multipotent migratory stem cell 
population unique to vertebrates, which contributes exten-
sively to the formation of a wide array of neural and non-neural 
structures in the embryo. NC cells originate in the ectoderm 
at the border of the neural tube, undergo an epithelial-mes-
enchymal transition and acquire outstanding individual and 
collective migratory properties that allow them to disseminate 
and differentiate to different parts of the body. This exquisite 
capacity to switch from an epithelium to motile cells repre-
sents both a puzzling biological issue and an attractive model 
to address the basic mechanisms of cell migration and their 
alteration during cancer progression. Here we review how sig-
naling pathways controlled by Rho GTPases, key players in cell 
adhesion, contraction, migration and polarity, contribute to 
control the different phases of NC development.



e27975-2 Small GTPases volume 5 

and acquisition of motility.21-25 EMT is controlled by an array 
of transcription factors downstream of Wnt and BMP signal-
ing. The main regulators of NC EMT include Snail1/2, Twist, 
Foxd3, and Sox9/1026-32 and are found in most animal models 
although their role in EMT has not necessarily been addressed. In 
cephalic regions, studies on the chick embryos have highlighted 
additional factors have been identified such as LSox5,33 Ets1,34-36 
and p53.37 Together, these factors control the various aspects of 
EMT required for delamination to proceed. In particular, they 
control changes in cell adhesion properties.38,39 NC cells have 
to separate from neurectoderm and switching to a different rep-
ertoire of adhesion molecules is an efficient way of preventing 
NC and neuroepithelial cells from mixing with one another. NC 
cells downregulate E-Cadherin and subsequently downregulate 
N-Cadherin4 but the timing of these successive losses of cadherin 
expression may vary along the antero-posterior axis and across 
species. In addition, they initiate expression of multiple type-
II cadherins (i.e., Cadherin 6/6B/7/11) which mediate weaker 
adhesion forces.21,25,38,40 This cadherin switch liberates NC cells 
from other cell populations and contributes to the onset of NC 
migration, aided and abetted by local matrix rearrangements and 
integrin activation.

NC cells go on to generate the astonishing list of deriva-
tives mentioned above and to colonize almost every part of the 
embryo. The pathways involved in NC differentiation are beyond 
the scope of this review and relevant information can be found 
elsewhere.4,41,42 The cell and molecular mechanisms of NC cell 
migration will be briefly described in the next section.

NC cells are an excellent model with which to study classical 
questions of developmental biology, from induction and pattern-
ing to stem cell properties and differentiation to cell migration. 

Interestingly, the main steps of NC development are also remi-
niscent of the series of events that occur during cancer metastasis. 
Cells within a given organ acquire new capabilities; they separate 
from their original tissue; migrate and finally settle elsewhere. 
Many genes essential for NC development (i.e., Snail, Twist, Sox, 
and Ets factors) are key players in cancer progression too.43-48 
Thus, NC cells are a good model to study the normal function 
of these genes. Several cancers actually arise from NC-derived 
cell types: skin49 and uveal50 melanoma (melanocytes), neuro-
blastoma51 (adrenal gland or nerve of the sympathetic nervous 
system), pheochromocytomas52 (chromaffin cells), schwan-
noma53 and neurofibrosarcoma54 (Schwann cells) . Furthermore, 
several cell lines have been made from tumors of NC origin. The 
most common include PC12 (rat pheochromocytoma), N1E-115 
(mouse neuroblastoma) as well as countless melanoma cell lines 
from various model organisms.

Overview of Neural Crest cell migration

Neural Crest guidance and migration pathways
Migratory NC cells follow well-defined routes throughout 

the embryo4,55,56 (Fig. 1C). These paths are lined with permis-
sive extracellular matrix molecules,57 mostly fibronectin, lami-
nins and collagens to which NC cells bind via integrins and 
syndecans.58 Access to a given area is controlled by negative and 
positive cues. The main negative regulators act in 2 ways: (1) 
they prevent entry into a given territory or (2) they prevent some 
NC cells to join a specific NC sub-population. These 2 levels of 
control generate of pattern of discrete streams from the continu-
ous wave of NC cells that delaminate from the neuroepithelium.

Figure 1. Overview of Neural Crest development. (A) Diagram depicting a dorsal view of a vertebrate embryo at early neurula stage. (B) Neural tube 
formation and neural crest delamination. Neural crest cells exit the dorsal region of the closing neural tube. (C) Summary of the main neural crest 
streams traveling through the embryo. Cephalic NC cells invade the face and the branchial arches while trunk neural crest cells migrate under the skin 
and through the somites.
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In the head, NC cells are subdivided into 3 main streams 
found in all species: (1) An anterior stream that goes around 
the eye and invades the anterior-most region of the face and 
first branchial arch (BA1); (2) A pre-otic stream that mostly 
migrates to BA2 and (3) a post-otic stream that invades BA3 
and 4 (Fig. 1C) but also contains cells that will migrate further 
ventrally toward the heart and along the gut.4 In the trunk, the 
main pattern is observed when cells cross the somites (Fig. 1C). 
In each animal model studied, migratory NC cells avoid a part of 
the somite. They pass through the anterior half in mice and chick 
embryos whereas they migrate along the medial or caudal part in 
fish and frogs, respectively.48 Numerous negative cues have been 
identified based on functional assays and/or loss-of-functions 
performed in chick and mouse and the main players are members 
of the semaphorin,59-65 Eph-ephrin,66-72 Slit-Robo,73-75 and endo-
thelin76 families of signaling molecules. Some of these molecules 
have dual roles, acting as negative regulators for some NC cells 
and as positive cues for others.

The generation of the 3 cephalic NC streams is mostly due 
to the presence of type3-Semaphorins coming from the rhomb-
encephalon and the otic vesicle which block migration in the 
mesenchyme adjacent to rhombomeres 3 and 5.64,65 In parallel, 
Eph-ephrin signaling controls cell sorting among NC cells but 
also between NC cells and their local environment to ensure 
that only cells with a specific Eph-ephrin repertoire are able to 
go through a given territory.68,71,72 The downstream effectors of 
the inhibitory cues remain poorly understood but in vitro studies 
indicate that they may act by blocking adhesion to the matrix. 
Similar signaling pathways and mechanisms pattern trunk NC 
migration.56

NC cells are further guided toward specific areas by positive 
regulators of cell migration that act as chemokinetic or chemotac-
tic factors. Vascular Endothelium Growth Factor A (VEGFA),77 
FGF2/8,78-80 Stromal cell-derived factor-1 (Sdf1/Cxcl12),81-89 
Platelet-derived Growth Factors (PDGF),90,91 Glial cell-Derived 
Neurotrophic Factor (GDNF),92-94 Endothelin-3 (ET-3)95,96and 
semaphorin 3C60 have been found to act as positive cues for NC 
migration. Sdf1 controls the overall dorso-ventral migration of 
cephalic NC cells,81,84,86 the targeted migration of dorsal root89 or 
sympathetic85 ganglia precursors, melanocyte migration toward 
the hair follicle87 and early cardiac NC migration.82 VEGFA 
and FGF signaling are required for migration into the branchial 
arches.77,78 GDNF and ET-3 control enteric NC migration along 
the gut41,97 whereas FGF2/8 controls NC migration toward the 
face.78,80

Mechanisms of solitary and collective migration in NC cells
An interesting aspect of NC migration is that the various NC 

subpopulations exhibit a range of different modes of migration 
with varying degrees of cooperation. Some, like melanocytes, 
migrate as single cells whereas cephalic NC cells migrate in a col-
lective manner, either as loosely connected chains as in chick NC 
cells or as a pseudoepithelium, as seen in early migratory cephalic 
Xenopus NC cells. Other types, such as enteric NC cells, have 
intermediate phenotypes with a mix of directional spreading, 
individual movement and collective behavior.

Importantly, all NC subpopulations studied so far respond 
to physical cell–cell contact regardless of their modes of migra-
tion. Time-lapse movies performed on mouse,97 chick,98,99 
Xenopus84,100 and zebrafish NC100 cells have shown that when 
two NC cells collide they retract their cell protrusions and 
momentarily stop migrating. This behavior is reminiscent 
of contact inhibition of locomotion (CIL), which was first 
described in fibroblasts.101,102 Indeed, further experiments in fish 
and frogs confirmed that NC cells exhibit CIL.81,84 Since CIL 
repolarizes cells away from the contact with one another, it tends 
to promote cell dispersion. As such it is one of the main driving 
forces of NC migration.

However, NC cells do not simply disperse and most NC sub-
populations travel in large cohorts. Some, like cephalic NC cells, 
clearly undergo collective cell migration and remain close to one 
another throughout migration. Intriguingly, CIL is counter-bal-
anced by another mechanism, coined co-attraction, which acts 
at a distance to maintain cell cohesiveness.103 In Xenopus, each 
NC cell expresses both complement factor C3a and its receptor 
C3aR. C3a diffuses and establishes a short-range gradient around 
each NC cell. Thus, NC cells are able to sense each other from a 
distance and are drawn toward one another.103 The co-existence 
of CIL and co-attraction means that cephalic NC cells do not 
disperse excessively in spite of their inability to maintain stable 
cell-cell junctions. Observations made in chick embryos98,99 sug-
gest that NC cells may also follow one another in this model but 
the molecular effectors remain to be found.

Rho Signaling in Neural Crest Cell Development

Introducing the Rho family of GTPases
Rho GTPases are key regulators of basic cell dynamics (cell-

cell and cell-ECM adhesion, polarity, migration, contraction) 
and have been implicated in many biological processes, espe-
cially cell migration and differentiation.104 Given the outstand-
ing dynamics of NC cells, it was thus likely that these regulators 
were at play in NC development.

Rho GTPases delineate a Ras-like family that emerged early 
in eukaryotes.105 In vertebrates, the Rho family contains about 20 
members that cluster in 8 sub-families (Fig. 2). RhoA-C, Rac and 
Cdc42, the most ancient members, are present in all fungi and 
metazoans and have been extensively studied in many animal and 
cellular models. They constitute the “big three” GTPases that 
control basic F-actin-dependent structures to modify cell shape, 
adhesion and migration in response to external cues: RhoA-C 
promotes cell-ECM adhesion and contraction through the for-
mation of focal adhesions and actomyosin bundles, whereas Rac 
and Cdc42 act in the opposite way by favoring actin polymer-
ization and branching over cell contraction and thus allowing 
extension of membrane protrusions, i.e., lamellipodia for Rac 
and filopodia for Cdc42. At the biochemical level, Rho GTPases 
behave as molecular switches by oscillating between inactive 
GDP-bound and active GTP-bound conformations. Only when 
bound to GTP do they gain the ability to bind to and activate a 
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set of downstream effector targets, which mediate their cellular 
effects.104

For about half of the Rho members (RhoA, C; Rac1, 2, 3; 
Cdc42; RhoQ; RhoD, F), activity is controlled either positively 
by RhoGEFs, which catalyze guanine nucleotide exchange reac-
tion thus favoring GTP loading, or negatively by RhoGAPs, 
which boost the intrinsic GTPase activity and promote the 
return to the inactive GDP-bound form. In contrast, the other 
members (Rnd1, 2, 3,106 the splicing Rac1b variant,107 RhoJ,108 
RhoBTB1/2, RhoH109 or RhoU/V110) either exchange guanine 
nucleotides spontaneously or are devoid of GTPase activity. 
These members, also known as atypical Rho GTPases,111 are 
therefore constitutively bound to GTP. Contrary to canonical 
Rho members, the biochemical activity of atypical members is 
thus tightly linked to their levels of expression. This particularity 
constitutes a plus for developmental studies, since the spatiotem-
poral activity of atypical Rho GTPases can be readily detected by 
mRNA in situ hybridization. Furthermore, since activity corre-
lates with expression, the use of morpholino antisense oligonucle-
otides is likely to efficiently inhibit their activity as compared 
with canonical GTPases.

The following sections will discuss the involvement of Rho 
signaling in NC induction, delamination and migration.

Rho signaling in NC induction
As mentioned above, NC induction is a complex 

process triggered by BMP, Wnt, FGF or Notch/
Delta emanating from mesoderm and neural- and 
non-neural ectoderm. Combination of these exter-
nal cues induces a cascade of transcription factors 
specifying and maintaining the NC precursors (see 
Steventon 2005112 and Klymkowsky 2010113 for 
reviews). Among NC specifiers are Hairy, Msx1, 
Dlx, or AP-2, initially expressed in the non-neural 
ectoderm and later restricted to the neural folds, 
and Pax3, Zic1 or c-Myc, expressed in the neural 
folds. Maintenance of NC precursors is controlled 
by Snail1–2, FoxD3, Id2/3, Sox5, 9 and 10, and 
Twist1. Rho factors are also involved in the cascade 
leading to NC precursors. Here we will expand on 
the involvement of the RhoGEF Lfc and the Rho 
members RhoV, RhoA, and Rac1.

Lfc
Ectopic expression of the RhoGEF Lfc, normally 

controlled by BMP-4 in the neural plate, elicited 
expansion of the neural plate territory at the expense 
of NC cells.114 However, it is not known whether 
Lfc affects NC specification directly or indirectly 
through its effect on the neural plate.

RhoV
In Xenopus, RhoV (an atypical Rho GTPase 

closely related to Rac and Cdc42105) is induced very 
early in NC, detected at stage 12 in prospective NC 
domains lateral to the neural plate in a canonical 
(β-catenin-dependent) Wnt manner.115 RhoV is also 
induced early in NC in the chick, detected in the 
neural folds from HH stage 7.116 RhoV is no longer 

detected in early migratory NC cells (stage 22) that are driven by 
non-canonical (β-catenin-independent) Wnt signaling.117 RhoV 
depletion inhibited expression of several NC specifiers (Snail2, 
Sox9–10, Twist) in a cell autonomous fashion and restricted 
the prospective NC territory at the benefit of the neural plate. 
Conversely, RhoV overexpression increased NC specifiers’ expres-
sion and expanded the prospective NC territory at the expense of 
the neural plate. Overall these data paint a picture whereby RhoV 
favors the acquisition of NC identity in response to canonical Wnt 
signaling. It must be stressed that in contrast to Rac1 and RhoA, 
whose activation is controlled by RhoGEFs, RhoV is spontaneously 
active and its activity therefore correlates with its level of expression.

RhoA and Rac1
RhoA and Rac1 are ubiquitously expressed Rho members 

whose activities are controlled biochemically and cannot thus be 
inferred from expression levels measured by in situ hybridization 
or conventional immuno-histochemistry. However, their activi-
ties can be manipulated by ectopic expression of constitutively 
active (CA) or dominant negative (DN) mutants, analogous to the 
Ras mutants G12V/Q61L and T17N, respectively.104 Activation 
of RhoA- and Rac1-controlled pathways showed opposite effects 
in NC induction118; NC prospective territory and expression of 
NC specifiers varied proportionally to Rac1 activity and inversely 

Figure 2. GTPases of the Rho family and their implication in early phases of NC devel-
opment. Rho members are shown on the left and their relatedness is summarized by 
a simplified dendrogram derived from Boureux, 2007.105 Rho members regulated at 
the transcriptional level are in blue. They are constitutively active, either because they 
are deficient for GTPase activity (Rnd1–3, RhoH, RhoBTB1–2) or because they exchange 
their nucleotide spontaneously (RhoJ, RhoQ, RhoU, Rhov). RhoB represents a particular 
case, being induced at the transcriptional level yet controlled biochemically by regula-
tors also acting on other members. The implication of Rho members in early phases of 
NC development (induction, eMT and migration) is indicated with the corresponding 
reference numbers.
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proportionally to RhoA activity. Snail2 showed the most pro-
nounced sensitivity to either GTPase as it was almost completely 
repressed upon Rac1 inhibition or RhoA activation. The effect of 
RhoA inhibition was similar to that of its downstream effector 
ROCK, which increased Snail2 gene transcription in Xenopus118 
and increased the proportion of NC-like progenitors in human 
ES cells.119 By contrast, the inhibition of the p21 activated kinase 
1 (PAK1), a major effector of RhoU–V, Rac1–3, and Cdc42 fam-
ily members, had no effect on Snail2, Sox9, or AP2 expression120 
indicating that this kinase does not mediate the effects of Rac1 or 
RhoV during NC induction.

All these observations raise the question of the mechanisms 
through which Rho signaling might affect gene expression dur-
ing NC induction. This may be associated with the common out-
comes of Rho activities on cell physiology, such as cell adhesion, 
polarity, lateral inhibition or cell cycle dynamics, all known to 
be critical for NC induction.113,121,122 It may also pertain to less 
known outcomes, like the role of Rac1 on c-myc phosphoryla-
tion and degradation during keratinocyte differentiation.123 This 
remains a wide open field.

Rho signaling in NC delamination
In vivo imaging at trunk levels in chick and fish embryos 

showed that NC cells undergo morphological changes charac-
teristic of EMT.124,125 Premigratory NC cells lose their adherens 
junctions, round up at the basal edge of the neuroepithelium, 
produce membrane blebs and detach from the basal surface. 
The free apical cell tail retracts, the NC cell body translocates 
out of the epithelium and apico-basal polarity is lost (Fig. 3). 

Interestingly, these events need not occur in a particular order. 
For instance, many NC cells exit the neural tube without down-
regulating cell-cell adhesion first.124,125 This reflects the fact that 
EMT is controlled by an array of transcription factors acting in 
parallel rather than in a linear fashion. Rho-controlled pathways 
are prime candidates for regulating these cellular events in NC 
cell EMT since cell rounding and blebbing are known to be con-
trolled by RhoA, ROCK and myosin-II in other cell systems. 
Indeed, inhibition of RhoA, B and C activity by C3 exotoxin 
prevented delamination of trunk NC cells in the chick126 and the 
pharmacological inhibition of ROCK or myosin-II led to a sub-
stantial decrease in NC blebbing and EMT in zebrafish cranial 
NC.124,125 The requirement of Rho/ROCK activity is therefore 
consistent with the notion that cell rounding and blebbing are 
required at the onset of delamination to allow NC cell detach-
ment from the neural tube.

There is some controversy however as opposite observations 
were reported in quail embryos, in which Rho or ROCK inhi-
bition facilitated EMT of trunk NC cells.127 The conflict may 
lie either in the use of distinct Rho C3 exoenzymes and ROCK 
inhibitors, which may have differential potencies, or in the differ-
ent developmental stages at which explants were assayed in the 2 
studies (stage 10 vs. stage 12–13). One likely explanation is that 
cell-cell adhesion and contractility require different levels of Rho 
activity, which cannot be precisely controlled in loss-of-function 
experiments. On the other hand, overexpression of RhoB in chick 
triggered NC cell rounding, which led to the idea that RhoB is 
important for the disassembly of the cell-cell adhesion complex.28 

Figure  3. Rho signaling during neural crest delamination in zebrafish and chick embryos. (A) Current view of zebrafish neural crest delamination. 
Arhgap1 restricts Rho activity to the apical side. NC cells exit the neural tube by retracting their apical side and forming blebs on their basal side. (B) 
Current view of chick neural crest delamination. Changes in cell-cell adhesion repertoire occur concomitantly with changes in cell contractility. NC cells 
may exit by first disrupting their cell-cell adhesion and then acquire motility. Alternatively, they may force their way out by forming protrusions and 
mechanically disrupting their junction with other neuroepithelial cells by pulling the cell body. Delaminating chick NC cells express RhoA, B, U and v. 
The respective roles of the Rho proteins are open to conjecture although it is likely that RhoU controls protrusion formation via PAK1/Rac1 whereas RhoB 
appears to be involved in cell-cell adhesion disassembly.
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Whether this is due to an increased contractility or to a com-
petition with RhoA at cell-cell junctions remains unknown. 
However, RhoB overexpression did not prime NC delamination 
or motility but triggered NC cell apoptosis, indicating that the 
downregulation of cell-cell adhesion and the acquisition of motil-
ity are largely independent.

A recent study revisited this issue in zebrafish and showed 
that Rho/ROCK activation is restricted to the apical subcellu-
lar region in an Arhgap1-dependent manner and is essential for 
detachment from the neuroepithelium128 (Fig. 3A). The actual 
regulators of actomyosin contractility in chick NC remain 
elusive. However, data collected on RhoU, PAK1, and coacto-
sin116,129,130 suggest that these factors could be involved in lamel-
lipodia formation during delamination and migration (Fig. 3B).

Overall, data in fish and chick embryos support the notion 
that, at trunk level, the Rho/ROCK pathway promotes EMT 
through apical actomyosin contraction during a very narrow spa-
tiotemporal window whereas Rac activity is likely to be mostly 
required for newly acquired motile properties.

At cephalic levels, NC departure is a lot more dramatic with 
multi-layered groups of cells migrating out of the neural tube at 
once. Several cranial specific factors such as Ets134,131 and LSox533 
have been identified but their downstream effectors are still elu-
sive. The expression of Snail2 is maintained throughout the 
whole delamination phase whereas it is quickly lost at trunk levels 
and this may also contribute to enhance EMT at cephalic levels. 
However, we do not have information about Rho GTPases activ-
ity or subcellular localization during cephalic crest emigration. In 
chick, RhoB is clearly expressed in emigrating cephalic NC cells132 
but its function has not been studied at early stages. With doz-
ens of NC cells undergoing EMT at the same time, the require-
ments for cell contractility and retraction of the apical tail may 
be very different from those in the trunk. In chick, the integrity 
of the dorsal neuroepithelium is not preserved during delamina-
tion since dorsal neural tube closure and NC departure are hap-
pening at the same time.133 In Xenopus and mouse, cephalic NC 
departure takes place while the neural plate is still open and thus 
NC cells may be leaving a more intact epithelial sheet. However, 
cranial NC cells in mouse have a very mesenchymal phenotype 
from the onset of migration134 whereas in Xenopus they start as 
a pseudoepithelial sheet.135,136 All these observations suggest that 
contractility, cell-cell adhesion or polarity may be controlled dif-
ferently in mouse, chick, and Xenopus but in absence of experi-
mental data one can only speculate about potential differences in 
terms of Rho GTPases activities in cephalic NC cells.

Rho signaling and NC migration
Once delaminated, NC cells must gain and maintain persis-

tent migration and navigate along specific paths to reach their 
final destinations. This requires the coordination of multiple 
processes, e.g., sensing of complex chemo-attractive and repul-
sive cues and their integration into appropriate cellular adhesive 
and migratory properties. As a consequence of EMT, NC cells 
extend protrusions, i.e., lamellipodia and filopodia, and acquire 
a fibroblast-like motile behavior. This type of motility has been 
extensively studied in many biological systems and relies on the 
coordinated antagonistic activities of RhoA and Rac1.

RhoA and Rac1 in NC cell migration
Although ubiquitously expressed in all cells of Xenopus embryos, 

Rac1 has a more pronounced expression in regions, such as migrat-
ing NC, that undergo intense cell movements.137 Expression of 
DN-Rac1 mutants in quail embryos inhibited NC migration but 
had no effect on specification or delamination. This is consistent 
with the fact that lamellipodia, major cell outcomes of Rac1 activity, 
are only formed after EMT completion.138 Interestingly, expression 
of CA-Rac1 mutants also inhibited NC cell migration. This likely 
results from the isotropic distribution of CA-Rac1 in transfected 
cells, whereas endogenous active Rac1 is normally distributed along 
a gradient from leading to trailing edge, as demonstrated in vivo 
and ex vivo by FRET analysis in Xenopus embryos.139

The restricted cellular distribution of active Rac1 is controlled 
by multiple antagonistic signals: at the trailing edge, Rac1 activ-
ity is downregulated by cell-cell contacts, such as those medi-
ated by N-cadherin.47,84 Cell-matrix interactions via Syndecan-4 
signaling also contribute to lower Rac1 activity.139 A molecular 
mechanism evidenced for the reduction of Rac1 signaling is 
the inhibition of the RhoGEF Trio through its interaction with 
Par3.140 Rac1 activity is also indirectly reduced through RhoA 
activation by the non-canonical Wnt/PCP pathway via Wnt11, 
Frizzled7, PTK-7 and Dishevelled81,100,117,139,141,142 (Fig. 4A).

At the leading edge, Rac1 is activated by Trio, itself activated 
by the pro-migratory Cadherin-11143 and can be further acti-
vated by external guidance cues; (1) Exposure to Sdf1 elicits a 
pronounced activation of Rac1 at the leading edge of Xenopus 
NC cells through Cxcr4 stimulation.84 Sdf1-mediated Rac1 
activation requires a pre-established gradient of Rac1 activity 
within the cell, mostly controlled by cell-cell interactions,84 as 
discussed above; (2) Rac1 is also activated by C3a/C3aR sig-
naling as part of the co-attraction mechanism that maintains 
migratory NC cells at relatively constant density103 (see section 
2). Whether Rac1 activation downstream of C3a/C3aR or Sdf1/
Cxcr4 requires Cadherin-11 and/or Trio remains unknown; (3) 
In enteric NC cells, proposed chemoattractants such as Glial cell 
line-Derived Neurotrophic Factor (GDNF) and Endothelin-3 
(ET-3) also activate Rac1144 whereas integrin signaling seems to 
mostly activate the RhoA/ROCK signaling.145

RhoA signaling also controls NC collective migration. In 
the chick embryo, post-otic NC cells were less directional when 
RhoA was over activated, while they migrated more slowly upon 
RhoA inhibition.146 A similar observation was reported in the 
mouse enteric NC (Fig. 4B), in which the level of RhoA/ROCK 
activity at the leading edge is negatively controlled by Phactr4 
(PHosphatase and ACTin Regulator 4).145In both cases collec-
tive migration was inhibited.145,146 This effect is likely due to the 
fact that affecting RhoA levels strongly modifies cell shape and 
prevents NC cells from efficiently interacting with one another.

Altogether Rho and Rac signals integrate to control cell polar-
ity (Fig. 4). The role of Rac1 however remains to be examined 
in mammals in more details, since its inactivation in mice was 
reported to have no detectable effect on early steps of NC devel-
opment.147 Whether the impact of RhoA on cell polarity also 
influences chemotactic abilities in chick and mouse NC cells 
remains to be investigated.
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RhoB and RhoU in NC cell migration
In Xenopus and mice, RhoB mRNA expression was detected 

in NC cells all along their migration paths,148,149 whereas in the 
chick, RhoB expression was restricted to pre-and early migrating 

cells.126 The exact role of RhoB in NC migration requires confir-
mation by loss-of-function experiments that specifically inhibit 
RhoB as the C3 exotoxin used in Liu et al.126 inactivates the three 
RhoA, B, and C. On the other hand, RhoB overexpression into 

Figure 4. Rho signaling in neural crest migration. (A) Rho signaling in migratory Xenopus cephalic neural crest cells. RhoA/ROCK signaling predominates 
at the rear of the cells. wnt/PCP effectors (wnt11/Fz7/PTK7/Dsh) activate RhoA whereas Par3 lowers Rac1 activity by inhibiting Trio. At the cell leading 
edge, Rac1 activity is triggered by Cadherin-11/Trio, RhoU via PAK1 and Sdf1/Cxcr4 via Ric-8A. The non-canonical wnt pathway induces RhoU, which is 
required for cell adhesion, and Calponin-2, which antagonizes Rho-induced stress fibers. (B) in mouse enteric NC cells, integrin signaling activates Rho/
ROCK pathways whereas GDNF and eT-3 activate Rac1/Cdc42 activities. Phactr4 controls lamellipodia formation at the leading edge cell through inhibi-
tion of integrin signaling toward RhoA/LiMK and cofilin dephosphorylation. Potential pathways are indicated by question marks.
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the neural tube is not sufficient to endow cells with motile prop-
erties28; therefore it must be acting in concert with other factors.

In Xenopus and chick, the atypical RhoU mRNA is induced 
in NC at the onset of migration.130 RhoU most likely promotes 
actin polymerization through PAK1109 (Fig. 4A). In Xenopus 
embryos, RhoU depletion or high expression both inhibited NC 
migration and led to a strong reduction in size of the NC-derived 
structures. RhoU could rescue RhoV depletion in NC specifi-
cation115 whereas RhoV did not rescue RhoU depletion in NC 
migration.130 The major difference between these 2 closely related 
GTPases are (1) RhoU displays an N-terminal SH3-binding 
domain and (ii) they are induced by distinct pathways (canonical 
Wnt for RhoV and non-canonical Wnt for RhoU). This supports 
a scenario according to which RhoU/RhoV duplication in verte-
brates was rapidly followed by functional and temporal special-
ization in NC. Whereas RhoU depletion inhibited cell adhesion 
and protrusions in Xenopus NC explants, a moderate overexpres-
sion did not affect cell adhesion nor migration speed. However, 
it strongly increased the number of cells leaving the explants in 
a PAK1- and Rac1-dependent manner but inhibited the persis-
tence of their migration. The hypothesized role of RhoU in NC 
migration is consistent with its cellular effects on cell adhesion in 
fibroblastic and epithelial cells.150-152

Concluding Remarks

NC development represents an outstanding dynamic process 
in which key issues of healthy and cancer cell biology are at play: 

interaction with the microenvironment to form a presumptive 
territory, control of EMT and maintenance of an epithelial struc-
ture, connection between cell proliferation, cell sorting, cell fate 
and survival, control of multipotency and cell differentiation, 
individual and collective cell migration. The currently identified 
functions of Rho GTPases in NC development mainly pertain 
to the control of contraction and adhesion and the establishment 
and maintenance of cell polarity, thus influencing downstream 
processes such as cell-cell interaction, long-distance migration 
and cell guidance. This leaves major unanswered issues on how 
Rho signaling controls the early steps of NC induction and opens 
new questions on the spatiotemporal activation of Rho signal-
ing: as we have discussed above, subtle variations in Rho activ-
ity levels during EMT are linked to different cell outcomes. 
This likely relies on dynamic changes in activity of RhoGEFs 
or RhoGAPs, whose identification should help understand how 
the level of active Rho influences cell-cell adhesion and motility. 
Getting deeper knowledge on the function Rho GTPases in such 
dynamic processes will also require new, sensitive and tunable 
tools.
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